📚Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View on GitHub

:warning: library/segtree/acl_segtree.hpp

Code

#pragma once

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

} // namespace internal

} // namespace atcoder

#endif // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <vector>

// #include "atcoder/internal_bit"

namespace atcoder {

// The following should be defined:
// The type S (monoid)
// The binary operation S op(S a, S b)
// The identity element S e()
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S> &v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) { update(i); }
    }

    void set(int p, S x) { // assigns x to a[p]
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const { // returns a[p]
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    // returns op(a[l], ..., a[r - 1]), assuming the properties of the monoid. 
    // It returns e() if l = r
    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    // returns op(a[0], ..., a[n - 1]), assuming the properties of the monoid.
    // It returns e() if n = 0
    S all_prod() const { return d[1]; }

    // applies binary search on the segment tree. The function bool f(S x) should be defined
    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    // The function object that takes S as the argument and returns bool should be defined
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

} // namespace atcoder

#endif // ATCODER_SEGTREE_HPP

// Reference: https://atcoder.github.io/ac-library/document_en/segtree.html
/* usage:
struct S {
    long long su;
    int nb;
};
S e() { return {0, 0}; }
S op(S l, S r) { return {l.su + r.su, l.nb + r.nb}; }
vector<S> seginit(100000, e());
atcoder::segtree<S, op, e> segtree(seginit);
*/
#line 2 "library/segtree/acl_segtree.hpp"

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

} // namespace internal

} // namespace atcoder

#endif // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <vector>

// #include "atcoder/internal_bit"

namespace atcoder {

// The following should be defined:
// The type S (monoid)
// The binary operation S op(S a, S b)
// The identity element S e()
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S> &v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) { update(i); }
    }

    void set(int p, S x) { // assigns x to a[p]
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const { // returns a[p]
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    // returns op(a[l], ..., a[r - 1]), assuming the properties of the monoid. 
    // It returns e() if l = r
    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    // returns op(a[0], ..., a[n - 1]), assuming the properties of the monoid.
    // It returns e() if n = 0
    S all_prod() const { return d[1]; }

    // applies binary search on the segment tree. The function bool f(S x) should be defined
    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    // The function object that takes S as the argument and returns bool should be defined
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

} // namespace atcoder

#endif // ATCODER_SEGTREE_HPP

// Reference: https://atcoder.github.io/ac-library/document_en/segtree.html
/* usage:
struct S {
    long long su;
    int nb;
};
S e() { return {0, 0}; }
S op(S l, S r) { return {l.su + r.su, l.nb + r.nb}; }
vector<S> seginit(100000, e());
atcoder::segtree<S, op, e> segtree(seginit);
*/
Back to top page