#pragma once
template <class T, class Op = multiplies<T>>
T power(T a, long long n, Op op = Op(), T e = {1}) { // argument a in mint
assert(n >= 0);
while (n) {
if (n & 1)
e = op(e, a);
if (n >>= 1)
a = op(a, a);
}
return e;
}
template <unsigned M> struct modular {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
static constexpr unsigned mod = M;
using m = modular;
unsigned v;
modular(long long x = 0) : v((x %= mod) < 0 ? x + mod : x) {}
m operator-() const { return m() -= *this; }
m &operator+=(m b) {
if ((int)(v += b.v - mod) < 0)
v += mod;
return *this;
}
m &operator-=(m b) {
if ((int)(v -= b.v) < 0)
v += mod;
return *this;
}
m &operator*=(m b) {
v = (uint64_t)v * b.v % mod;
return *this;
}
m &operator/=(m b) { return *this *= power(b, mod - 2); }
friend m operator+(m a, m b) { return a += b; }
friend m operator-(m a, m b) { return a -= b; }
friend m operator*(m a, m b) { return a *= b; }
friend m operator/(m a, m b) { return a /= b; }
friend bool operator==(m a, m b) { return a.v == b.v; }
friend bool operator!=(m a, m b) { return a.v != b.v; }
bool operator<(const modular &x) const {
return v < x.v;
} // To use std::map<modular, T>
friend std::istream &operator>>(std::istream &is, modular &x) {
long long t;
return is >> t, x = modular(t), is;
}
friend std::ostream &operator<<(std::ostream &os, const modular &x) {
return os << x.v;
}
#pragma GCC diagnostic pop
};
// using mint = modular<998244353>;
// using mint = modular<1000000007>;
#line 2 "library/mod/mint.hpp"
template <class T, class Op = multiplies<T>>
T power(T a, long long n, Op op = Op(), T e = {1}) { // argument a in mint
assert(n >= 0);
while (n) {
if (n & 1)
e = op(e, a);
if (n >>= 1)
a = op(a, a);
}
return e;
}
template <unsigned M> struct modular {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
static constexpr unsigned mod = M;
using m = modular;
unsigned v;
modular(long long x = 0) : v((x %= mod) < 0 ? x + mod : x) {}
m operator-() const { return m() -= *this; }
m &operator+=(m b) {
if ((int)(v += b.v - mod) < 0)
v += mod;
return *this;
}
m &operator-=(m b) {
if ((int)(v -= b.v) < 0)
v += mod;
return *this;
}
m &operator*=(m b) {
v = (uint64_t)v * b.v % mod;
return *this;
}
m &operator/=(m b) { return *this *= power(b, mod - 2); }
friend m operator+(m a, m b) { return a += b; }
friend m operator-(m a, m b) { return a -= b; }
friend m operator*(m a, m b) { return a *= b; }
friend m operator/(m a, m b) { return a /= b; }
friend bool operator==(m a, m b) { return a.v == b.v; }
friend bool operator!=(m a, m b) { return a.v != b.v; }
bool operator<(const modular &x) const {
return v < x.v;
} // To use std::map<modular, T>
friend std::istream &operator>>(std::istream &is, modular &x) {
long long t;
return is >> t, x = modular(t), is;
}
friend std::ostream &operator<<(std::ostream &os, const modular &x) {
return os << x.v;
}
#pragma GCC diagnostic pop
};
// using mint = modular<998244353>;
// using mint = modular<1000000007>;