📚Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View on GitHub

:heavy_check_mark: library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp

Depends on

Code

#include <bits/stdc++.h>
using namespace std;
#include "../../mod/mint.hpp"
#include "../../segtree/lazysegtree.hpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

using T = modular<998244353>;
using S = pair<T, int>;
using F = pair<T, T>;
S op(S a,S b) { return make_pair(a.first + b.first, a.second + b.second); }
S e() { return make_pair(0, 0); }
S mapping(F f,S x) { 
    return make_pair(f.first * x.first + f.second * x.second, x.second); 
}
F composition(F f,F g) { 
    return make_pair(g.first * f.first, f.second + f.first * g.second); 
}
F id() { return make_pair(1, 0); }

int main() {
    ios_base::sync_with_stdio(0);
    int n, q;
    cin>>n>>q;
    vector<S> v(n);
    for(auto &a: v) {
        cin>>a.first;
        a.second = 1;
    }
    LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
    while(q--) {
        int typ, l, r;
        cin>>typ>>l>>r;
        if(typ==0) {
            F x;
            cin>>x.first>>x.second;
            seg.apply(l, r, x);
        } else {
            cout<<seg.prod(l, r).first<<'\n';
        }
    }
    return 0;
}
#line 1 "library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp"
#include <bits/stdc++.h>
using namespace std;
#line 2 "library/mod/mint.hpp"

template <class T, class Op = multiplies<T>>
T power(T a, long long n, Op op = Op(), T e = {1}) { // argument a in mint
    assert(n >= 0);
    while (n) {
        if (n & 1)
            e = op(e, a);
        if (n >>= 1)
            a = op(a, a);
    }
    return e;
}
template <unsigned M> struct modular {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
    static constexpr unsigned mod = M;
    using m = modular;
    unsigned v;
    modular(long long x = 0) : v((x %= mod) < 0 ? x + mod : x) {}
    m operator-() const { return m() -= *this; }
    m &operator+=(m b) {
        if ((int)(v += b.v - mod) < 0)
            v += mod;
        return *this;
    }
    m &operator-=(m b) {
        if ((int)(v -= b.v) < 0)
            v += mod;
        return *this;
    }
    m &operator*=(m b) {
        v = (uint64_t)v * b.v % mod;
        return *this;
    }
    m &operator/=(m b) { return *this *= power(b, mod - 2); }
    friend m operator+(m a, m b) { return a += b; }
    friend m operator-(m a, m b) { return a -= b; }
    friend m operator*(m a, m b) { return a *= b; }
    friend m operator/(m a, m b) { return a /= b; }
    friend bool operator==(m a, m b) { return a.v == b.v; }
    friend bool operator!=(m a, m b) { return a.v != b.v; }
    bool operator<(const modular &x) const {
        return v < x.v;
    } // To use std::map<modular, T>
    friend std::istream &operator>>(std::istream &is, modular &x) {
        long long t;
        return is >> t, x = modular(t), is;
    }
    friend std::ostream &operator<<(std::ostream &os, const modular &x) {
        return os << x.v;
    }
#pragma GCC diagnostic pop
};
// using mint = modular<998244353>;
// using mint = modular<1000000007>;
#line 2 "library/segtree/lazysegtree.hpp"

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct LazySegmentTree {
  private:
    int _n, size, log;
    vector<S> dat;
    vector<F> lz;
    void update(int k) { dat[k] = op(dat[2 * k], dat[2 * k + 1]); }
    void all_apply(int k, F f) {
        dat[k] = mapping(f, dat[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
    int lower_bits(int x, int k) { return x & ((1 << k) - 1); }

  public:
    LazySegmentTree() : LazySegmentTree(0) {}
    LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
    LazySegmentTree(const vector<S>& v) : _n(int(v.size())) {
        log = 0;
        while ((1 << log) < _n) log++;
        size = 1 << log;
        dat = vector<S>(2 * size, e());
        lz = vector<F>(size, id());
        for (int i = 0; i < _n; i++) dat[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) update(i);
    }
    // a[p] = x
    void set(int p, S x) {
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        dat[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    // return a[p]
    S get(int p) {
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return dat[p];
    }
    // return op(a[l], ..., a[r-1])
    S prod(int l, int r) {
        if (l == r) return e();
        l += size;
        r += size;
        for (int i = log; i >= 1; i--) {
            if (lower_bits(l, i) > 0) push(l >> i);
            if (lower_bits(r, i) > 0) push((r - 1) >> i);
        }
        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, dat[l++]);
            if (r & 1) smr = op(dat[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }
    S all_prod() { return dat[1]; }
    // a[p] = f(a[p])
    void apply(int p, F f) {
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        dat[p] = mapping(f, dat[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    // a[i] = f(a[i]) for i = l...r-1
    void apply(int l, int r, F f) {
        if (l == r) return;
        l += size;
        r += size;
        for (int i = log; i >= 1; i--) {
            if (lower_bits(l, i) > 0) push(l >> i);
            if (lower_bits(r, i) > 0) push((r - 1) >> i);
        }
        int l2 = l, r2 = r;
        while (l < r) {
            if (l & 1) all_apply(l++, f);
            if (r & 1) all_apply(--r, f);
            l >>= 1;
            r >>= 1;
        }
        l = l2;
        r = r2;
        for (int i = 1; i <= log; i++) {
            if (lower_bits(l, i) > 0) update(l >> i);
            if (lower_bits(r, i) > 0) update((r - 1) >> i);
        }
    }

    // Binary search on SegmentTree (if needed)
    // return r, f(op(a[l], ..., a[r-1])) == true
    template <bool (*g)(S)>
    int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G>
    int max_right(int l, G g) {
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, dat[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, dat[l]))) {
                        sm = op(sm, dat[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, dat[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }
    // return l, f(op(a[l], ..., a[r-1])) == true
    template <bool (*g)(S)>
    int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G>
    int min_left(int r, G g) {
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(dat[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(dat[r], sm))) {
                        sm = op(dat[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(dat[r], sm);
        } while ((r & -r) != r);
        return 0;
    }
}; // LazySegmentTree
#line 5 "library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

using T = modular<998244353>;
using S = pair<T, int>;
using F = pair<T, T>;
S op(S a,S b) { return make_pair(a.first + b.first, a.second + b.second); }
S e() { return make_pair(0, 0); }
S mapping(F f,S x) { 
    return make_pair(f.first * x.first + f.second * x.second, x.second); 
}
F composition(F f,F g) { 
    return make_pair(g.first * f.first, f.second + f.first * g.second); 
}
F id() { return make_pair(1, 0); }

int main() {
    ios_base::sync_with_stdio(0);
    int n, q;
    cin>>n>>q;
    vector<S> v(n);
    for(auto &a: v) {
        cin>>a.first;
        a.second = 1;
    }
    LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
    while(q--) {
        int typ, l, r;
        cin>>typ>>l>>r;
        if(typ==0) {
            F x;
            cin>>x.first>>x.second;
            seg.apply(l, r, x);
        } else {
            cout<<seg.prod(l, r).first<<'\n';
        }
    }
    return 0;
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 7 ms 4 MB
g++ max_random_00 :heavy_check_mark: AC 966 ms 20 MB
g++ max_random_01 :heavy_check_mark: AC 1016 ms 20 MB
g++ max_random_02 :heavy_check_mark: AC 995 ms 20 MB
g++ random_00 :heavy_check_mark: AC 841 ms 19 MB
g++ random_01 :heavy_check_mark: AC 846 ms 19 MB
g++ random_02 :heavy_check_mark: AC 645 ms 5 MB
g++ small_00 :heavy_check_mark: AC 8 ms 4 MB
g++ small_01 :heavy_check_mark: AC 6 ms 4 MB
g++ small_02 :heavy_check_mark: AC 7 ms 4 MB
g++ small_03 :heavy_check_mark: AC 6 ms 4 MB
g++ small_04 :heavy_check_mark: AC 7 ms 4 MB
g++ small_05 :heavy_check_mark: AC 7 ms 4 MB
g++ small_06 :heavy_check_mark: AC 6 ms 4 MB
g++ small_07 :heavy_check_mark: AC 6 ms 4 MB
g++ small_08 :heavy_check_mark: AC 7 ms 4 MB
g++ small_09 :heavy_check_mark: AC 7 ms 4 MB
g++ small_random_00 :heavy_check_mark: AC 7 ms 4 MB
g++ small_random_01 :heavy_check_mark: AC 7 ms 4 MB
Back to top page