#include <bits/stdc++.h>
using namespace std;
#include "../../mod/mint.hpp"
#include "../../segtree/lazysegtree.hpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
using T = modular<998244353>;
using S = pair<T, int>;
using F = pair<T, T>;
S op(S a,S b) { return make_pair(a.first + b.first, a.second + b.second); }
S e() { return make_pair(0, 0); }
S mapping(F f,S x) {
return make_pair(f.first * x.first + f.second * x.second, x.second);
}
F composition(F f,F g) {
return make_pair(g.first * f.first, f.second + f.first * g.second);
}
F id() { return make_pair(1, 0); }
int main() {
ios_base::sync_with_stdio(0);
int n, q;
cin>>n>>q;
vector<S> v(n);
for(auto &a: v) {
cin>>a.first;
a.second = 1;
}
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
while(q--) {
int typ, l, r;
cin>>typ>>l>>r;
if(typ==0) {
F x;
cin>>x.first>>x.second;
seg.apply(l, r, x);
} else {
cout<<seg.prod(l, r).first<<'\n';
}
}
return 0;
}
#line 1 "library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp"
#include <bits/stdc++.h>
using namespace std;
#line 2 "library/mod/mint.hpp"
template <class T, class Op = multiplies<T>>
T power(T a, long long n, Op op = Op(), T e = {1}) { // argument a in mint
assert(n >= 0);
while (n) {
if (n & 1)
e = op(e, a);
if (n >>= 1)
a = op(a, a);
}
return e;
}
template <unsigned M> struct modular {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
static constexpr unsigned mod = M;
using m = modular;
unsigned v;
modular(long long x = 0) : v((x %= mod) < 0 ? x + mod : x) {}
m operator-() const { return m() -= *this; }
m &operator+=(m b) {
if ((int)(v += b.v - mod) < 0)
v += mod;
return *this;
}
m &operator-=(m b) {
if ((int)(v -= b.v) < 0)
v += mod;
return *this;
}
m &operator*=(m b) {
v = (uint64_t)v * b.v % mod;
return *this;
}
m &operator/=(m b) { return *this *= power(b, mod - 2); }
friend m operator+(m a, m b) { return a += b; }
friend m operator-(m a, m b) { return a -= b; }
friend m operator*(m a, m b) { return a *= b; }
friend m operator/(m a, m b) { return a /= b; }
friend bool operator==(m a, m b) { return a.v == b.v; }
friend bool operator!=(m a, m b) { return a.v != b.v; }
bool operator<(const modular &x) const {
return v < x.v;
} // To use std::map<modular, T>
friend std::istream &operator>>(std::istream &is, modular &x) {
long long t;
return is >> t, x = modular(t), is;
}
friend std::ostream &operator<<(std::ostream &os, const modular &x) {
return os << x.v;
}
#pragma GCC diagnostic pop
};
// using mint = modular<998244353>;
// using mint = modular<1000000007>;
#line 2 "library/segtree/lazysegtree.hpp"
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct LazySegmentTree {
private:
int _n, size, log;
vector<S> dat;
vector<F> lz;
void update(int k) { dat[k] = op(dat[2 * k], dat[2 * k + 1]); }
void all_apply(int k, F f) {
dat[k] = mapping(f, dat[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
int lower_bits(int x, int k) { return x & ((1 << k) - 1); }
public:
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
LazySegmentTree(const vector<S>& v) : _n(int(v.size())) {
log = 0;
while ((1 << log) < _n) log++;
size = 1 << log;
dat = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) dat[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) update(i);
}
// a[p] = x
void set(int p, S x) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
// return a[p]
S get(int p) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
// return op(a[l], ..., a[r-1])
S prod(int l, int r) {
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, dat[l++]);
if (r & 1) smr = op(dat[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return dat[1]; }
// a[p] = f(a[p])
void apply(int p, F f) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = mapping(f, dat[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
// a[i] = f(a[i]) for i = l...r-1
void apply(int l, int r, F f) {
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
for (int i = 1; i <= log; i++) {
if (lower_bits(l, i) > 0) update(l >> i);
if (lower_bits(r, i) > 0) update((r - 1) >> i);
}
}
// Binary search on SegmentTree (if needed)
// return r, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, dat[l]))) {
sm = op(sm, dat[l]);
l++;
}
}
return l - size;
}
sm = op(sm, dat[l]);
l++;
} while ((l & -l) != l);
return _n;
}
// return l, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(dat[r], sm))) {
sm = op(dat[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
}; // LazySegmentTree
#line 5 "library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
using T = modular<998244353>;
using S = pair<T, int>;
using F = pair<T, T>;
S op(S a,S b) { return make_pair(a.first + b.first, a.second + b.second); }
S e() { return make_pair(0, 0); }
S mapping(F f,S x) {
return make_pair(f.first * x.first + f.second * x.second, x.second);
}
F composition(F f,F g) {
return make_pair(g.first * f.first, f.second + f.first * g.second);
}
F id() { return make_pair(1, 0); }
int main() {
ios_base::sync_with_stdio(0);
int n, q;
cin>>n>>q;
vector<S> v(n);
for(auto &a: v) {
cin>>a.first;
a.second = 1;
}
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
while(q--) {
int typ, l, r;
cin>>typ>>l>>r;
if(typ==0) {
F x;
cin>>x.first>>x.second;
seg.apply(l, r, x);
} else {
cout<<seg.prod(l, r).first<<'\n';
}
}
return 0;
}