Lazy Segtree (library/segtree/lazysegtree.hpp)
- View this file on GitHub
- View document part on GitHub
- Last update: 2024-03-15 16:42:38+06:00
- Include:
#include "library/segtree/lazysegtree.hpp"
Constructor
- lazy_segtree<S, op, e, F, mapping, composition, id> seg(int n);
- lazy_segtree<S, op, e, F, mapping, composition, id> seg(vector
v);
The following should be defined.
- The type S of the monoid
- The binary operation S op(S a, S b)
- The function S e() that returns e
- The type F of the map
- The function S mapping(F f, S x) that returns $f(x)$
- The function F composition(F f, F g) that returns $\mathrm{\circ f∘g}$
- The function F id() that returns $id$
S & F
S is data, the type of each element and range query result.
F is lazy, the type of values that represent operations(maps).
S op(S a, S b)
Defines what kind of calculation is used to obtain the interval.
S mapping(F f, S x)
A function $f$ that operates on the data value of each node $x$.
F composition(F f, F g)
It is a function that adds a new operation to lazy that has already accumulated the operations so far. $g$ is the operation so far, $f$ is the operation to be added after, and returns “a set of operations (composition map) that performs the two operations in order”.
S e(), F id()
These are the functions that return the identity map for the interval retrieval operation and the interval manipulation operation respectively.
The identity element e of a binary operation is the one that satisfies all op.
As a frequently used unit element or identity map, if minimum: +∞, if maximum: −∞, if sum or addition: 0, if it is a product or multiplication: 1 should be used.
$mapping$ The identity map in an operating function is $id$. In the case of an interval addition operation, “a value that never changes the target value even if added”.
Example
Sample
struct S {};
S op(S a, S b) {
return {};
}
S e() { return {}; };
using F = bool;
S mp(F f, S x) {
return x;
}
F composition(F fnew, F gold) { return fnew ^ gold; }
F id() { return false; }
vector<S> v;
LazySegmentTree<S, op, e, F, mp, composition, id> seg(v);
Range addition/ Range minimum query
using S = long long;
using F = long long;
const S INF = 8e18;
S op(S a, S b){ return std::min(a, b); }
S e(){ return INF; }
S mapping(F f, S x){ return f+x; }
F composition(F f, F g){ return f+g; }
F id(){ return 0; }
int main(){
int N;
std::vector<S> v(N);
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Range addition/ Range maximum query
using S = long long;
using F = long long;
const S INF = 8e18;
S op(S a, S b){ return std::max(a, b); }
S e(){ return -INF; }
S mapping(F f, S x){ return f+x; }
F composition(F f, F g){ return f+g; }
F id(){ return 0; }
int main(){
int N;
std::vector<S> v(N);
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Range Addition/ Range Sum query
Since the interval width is required, it has a value in a structure. Get the value with $seg.prod(l, r).val$ RSQ and RAQ
struct S {
long long val; // actual value
int size; // interval width
};
using F = long long;
S op(S a, S b) {
return {a.val + b.val, a.size + b.size};
}
S e() { return {0, 0}; }
S mapping(F f, S x) {
return {x.val + f*x.size, x.size};
}
F composition(F f, F g) { return f+g; }
F id() { return 0; }
int main(){
int N;
std::vector<S> v(N, {0, 1});
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Range update/ Range minimum query
using S = long long;
using F = long long;
const S INF = 8e18;
const F ID = 8e18;
S op(S a, S b){ return std::min(a, b); }
S e(){ return INF; }
S mapping(F f, S x){ return (f == ID ? x : f); }
F composition(F f, F g){ return (f == ID ? g : f); }
F id(){ return ID; }
int main(){
int N;
std::vector<S> v(N); // v(N, INF/ID)?
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Range update/ Range maximum query
using S = long long;
using F = long long;
const S INF = 8e18;
const F ID = 8e18;
S op(S a, S b){ return std::max(a, b); }
S e(){ return -INF; }
S mapping(F f, S x){ return (f == ID ? x : f); }
F composition(F f, F g){ return (f == ID ? g : f); }
F id(){ return ID; }
int main(){
int N;
std::vector<S> v(N);
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Range update/ Range sum query
struct S{
long long value;
int size;
};
using F = long long;
const F ID = 8e18;
S op(S a, S b){ return {a.value+b.value, a.size+b.size}; }
S e(){ return {0, 0}; }
S mapping(F f, S x){
if(f != ID) x.value = f*x.size;
return x;
}
F composition(F f, F g){ return (f == ID ? g : f); }
F id(){ return ID; }
int main(){
int N;
std::vector<S> v(N, {0, 1});
LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);
}
Link
- ACL reference
- https://atcoder.jp/contests/practice2/editorial/100
- Uses
- Cheat Sheet
Verified with
library/test/aoj/DSL_2_D-RUQ.lazysegtree.test.cpp
library/test/aoj/DSL_2_E-RAQ.segtree.test.cpp
library/test/aoj/DSL_2_F-RMQ_and_RUQ.lazysegtree.test.cpp
library/test/aoj/DSL_2_G-RSQ_and_RAQ.lazysegtree.test.cpp
library/test/aoj/DSL_2_H-RMQ_and_RAQ.lazysegtree.test.cpp
library/test/aoj/DSL_2_I-RSQ and RUQ.lazysegtree.test.cpp
library/test/yosupo/range_affine_range_sum.lazysegtree.test.cpp
Code
#pragma once
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct LazySegmentTree {
private:
int _n, size, log;
vector<S> dat;
vector<F> lz;
void update(int k) { dat[k] = op(dat[2 * k], dat[2 * k + 1]); }
void all_apply(int k, F f) {
dat[k] = mapping(f, dat[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
int lower_bits(int x, int k) { return x & ((1 << k) - 1); }
public:
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
LazySegmentTree(const vector<S>& v) : _n(int(v.size())) {
log = 0;
while ((1 << log) < _n) log++;
size = 1 << log;
dat = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) dat[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) update(i);
}
// a[p] = x
void set(int p, S x) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
// return a[p]
S get(int p) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
// return op(a[l], ..., a[r-1])
S prod(int l, int r) {
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, dat[l++]);
if (r & 1) smr = op(dat[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return dat[1]; }
// a[p] = f(a[p])
void apply(int p, F f) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = mapping(f, dat[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
// a[i] = f(a[i]) for i = l...r-1
void apply(int l, int r, F f) {
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
for (int i = 1; i <= log; i++) {
if (lower_bits(l, i) > 0) update(l >> i);
if (lower_bits(r, i) > 0) update((r - 1) >> i);
}
}
// Binary search on SegmentTree (if needed)
// return r, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, dat[l]))) {
sm = op(sm, dat[l]);
l++;
}
}
return l - size;
}
sm = op(sm, dat[l]);
l++;
} while ((l & -l) != l);
return _n;
}
// return l, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(dat[r], sm))) {
sm = op(dat[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
}; // LazySegmentTree
#line 2 "library/segtree/lazysegtree.hpp"
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct LazySegmentTree {
private:
int _n, size, log;
vector<S> dat;
vector<F> lz;
void update(int k) { dat[k] = op(dat[2 * k], dat[2 * k + 1]); }
void all_apply(int k, F f) {
dat[k] = mapping(f, dat[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
int lower_bits(int x, int k) { return x & ((1 << k) - 1); }
public:
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
LazySegmentTree(const vector<S>& v) : _n(int(v.size())) {
log = 0;
while ((1 << log) < _n) log++;
size = 1 << log;
dat = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) dat[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) update(i);
}
// a[p] = x
void set(int p, S x) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
// return a[p]
S get(int p) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
// return op(a[l], ..., a[r-1])
S prod(int l, int r) {
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, dat[l++]);
if (r & 1) smr = op(dat[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return dat[1]; }
// a[p] = f(a[p])
void apply(int p, F f) {
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = mapping(f, dat[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
// a[i] = f(a[i]) for i = l...r-1
void apply(int l, int r, F f) {
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (lower_bits(l, i) > 0) push(l >> i);
if (lower_bits(r, i) > 0) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
for (int i = 1; i <= log; i++) {
if (lower_bits(l, i) > 0) update(l >> i);
if (lower_bits(r, i) > 0) update((r - 1) >> i);
}
}
// Binary search on SegmentTree (if needed)
// return r, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, dat[l]))) {
sm = op(sm, dat[l]);
l++;
}
}
return l - size;
}
sm = op(sm, dat[l]);
l++;
} while ((l & -l) != l);
return _n;
}
// return l, f(op(a[l], ..., a[r-1])) == true
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(dat[r], sm))) {
sm = op(dat[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
}; // LazySegmentTree